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One-minute k-nearest neighbors (KNN)!
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. . 8 KNN ALGORITHM
[ J
° 1. the values for humidity and
801 : e - temperature define the new
° ° datapoint in input
[
¢ 2. measure the Euclidean
= rain distance (Pythagoras
g ® rain theorem inside!) with all
£, § T ® rorain other points
@
o 3. find the closest point
° (neighbor) to our new point
[ ] [ ]
° 4.  assign to the new point the
» label (colour) of this
10 @ nearest neighbor (k=1)
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One-minute k-nearest neighbors (KNN)!

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a
duck.




KNN: more than 3-D

-  We saw a simple example with few datapoints and only 2
dimensions

- When we have (typically) many dimensions (e.g. many SNPs)
and many datapoints (e.g. many samples) we need the machine
to do it! (and we can no longer visualize it)
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KNN: majority?

K-neighborhood —
maijority!
- average
- weighted majority
- weighted avg
- etc.
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KNN: Euclidean distance?
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similarity<»dissimilarity
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many possible
distance metrics
(Hamming,
Chebyshev, Jaccard
etc.) — see here


https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

KNN: a few things to tweak

KNN is said to be non-parametric, still:
- size of neighborhood (K)
- type of distance
- type of assignment metric (majority, average, weighted metrics, etc.)
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The curse of dimensionality

KNN assumes that similar
(close) points share similar
labels/target

, unfortunately, in high

- dimensional spaces points
tend to never be close
together

- increasing the number of dimensions
(parameters) of the problem increases and
complicates the identification of k neighbors
which are close enough to the data point to
be classified/predicted
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The curse of dimensionality
| = (k)Y A

n

I: side of the hypercube that include the k neighbours -
n: sample size 1¢-------
d: n. of dimensions

with n constant (data size), the hypercube in
which the k neighbors lie gets bigger as d
increases
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The curse of dimensionality

distributions of all pairwise distances in the neighbourhood
between randomly drawn points within d-dimensional unit
hypercubes: as the number of dimensions d grows, all
distances concentrate within a very small range (“the night
where all cows are black”)
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From: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
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KNN: as lazy as it gets

- KNN is a lazy algorithm: each time new datapoints are added (e.g. to be predicted) pairwise
distances with all existing datapoints (over all dimensions) must be calculated
s calculations are slow
-  However:
.5+ Wwhen new data are available, there’s no need to retrain the model (no parameters to
%\' estimate or fine-tune) — excellent for applications where data are added incrementally
(e.g. on-line learning, update predictions)
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What about imputation?

- Ok, we learnt about KNN, but imputation?

- The imputation of missing SNP genotypes is a type of
prediction (slightly “sui generis”), where non-missing values can
be considered as training observations and missing values as the
test observations

-  KNNI is a more advanced imputation method compared to
mean/median imputation

1, Yet, more specialised method for genomic data have been
developed
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Why KNN imputation? o

@ CrossMark

Mol Breeding (2016)36:69
DOI 10.1007/s11032-016-0490-y
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Marker imputation efficiency for genotyping-by-sequencing
data in rice (Oryza sativa) and alfalfa (Medicago sativa)

Nelson Nazzicari - Filippo Biscarini -
Paolo Cozzi - E. Charles Brummer -
Paolo Annicchiarico
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Why KNN imputation? o

- GBS data: > 50% missing data

- rice, Oryza sativa: ordered markers (known
reference genome)

- alfalfa, Medicago sativa (lodi & reforma
datasets): unordered markers (no reference
genome available - at the time)
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KNN imputation - rice
\ T e e e o B o e et
- x-axis: % injected missing [1%-20%)] Pl
- panels: % allowed missing [10%-70%] B R R S
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KNN imputation - alfalfa

x-axis: % injected missing [1%-20%)]

panels: % allowed missing [10%-70%]

total accuracy, AA, AB, BB

MNI (salmon), KNNI (red), SVDI (blue), RFI
(green), Beagle with ordered markers (solid
black), Beagle with unordered markers (dashed
black), FILLIN with ordered markers (purple)
FILLIN with unordered markers (dashed purple)
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Not only genotypes

SCIEp,
o*“}ll\‘\%(; J. Dairy Sci. 105:5124-5140
AQBBY < https:/idoi.org/10.3168/jds.2021-20158
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random forest prediction of enteric methane in dairy cattle

Enyew Negussie,'* © Oscar Gonzalez-Recio,” © Mara Battagin,’ © Ali-Reza Bayat,* ©® Tommy Boland,’ ©
Yvette de Haas,® ® Aser Garcia-Rodriguez,” © Philip C. Garnsworthy,® © Nicolas Gengler,’ ¢
Michael Kreuzer,'®® Bjorn Kuhla," © Jan Lassen,'?® Nico Peiren,” © Marcin Pszczola,' ¢
Angela Schwarm,’® © Héléne Soyeurt,” © Amélie Vanlierde,’® © Tianhai Yan,"” © and Filippo Biscarini'®¢

=aiy i - o b 4,

Ggog 00 @

'



NEXT LECTURE

Genotype imputation with KNN: a demonstration
(R code)



