

KNN Imputation

Christian Werner

(Quantitative geneticist and biostatistician) **EiB, CIMMYT**, Texcoco (Mexico)

Filippo Biscarini

OscarGenomics

(Biostatistician, bioinformatician and quantitative geneticist) **CNR-IBBA**, Milan (Italy)

Oscar González-Recio

(Computational biologist and quantitative geneticist) **INIA-UPM**, Madrid (Spain)

One-minute k-nearest neighbors (KNN)!

- 1. We collect data on temperature, humidity and rain, for a number of days
- 2. New day: will it rain?

k-nearest neighbors (KNN): a bit of math

KNN ALGORITHM

- 1. the values for humidity and temperature define the new datapoint in input
- 2. measure the Euclidean distance (Pythagoras theorem inside!) with all other points
- 3. find the closest point (neighbor) to our new point
- 4. assign to the new point the label (colour) of this nearest neighbor (k=1)

One-minute k-nearest neighbors (KNN)!

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

$Pr(Y=j|X=x_0)$

KNN: more than 3-D

- We saw a simple example with few datapoints and only 2 dimensions
- When we have (typically) many dimensions (e.g. many SNPs) and many datapoints (e.g. many samples) we need the machine to do it! (and we can no longer visualize it)

- K-neighborhood → majority!

KNN: majority?

Physalia Courses

- K-neighborhood → majority!
	- average
	- weighted majority
	- weighted avg
	- etc.

KNN: Euclidean distance?

- similarity↔dissimilarity
- $-$ [0, $+∞$]
- many possible distance metrics (Hamming, Chebyshev, Jaccard $etc.) \rightarrow see \underline{here}$

KNN: a few things to tweak

KNN is said to be non-parametric, still:

- size of neighborhood (K)
- type of distance
- type of assignment metric (majority, average, weighted metrics, etc.)

The curse of dimensionality

- KNN assumes that **similar (close) points share similar labels/target**

- unfortunately, **in high dimensional spaces points tend to never be close together**
- increasing the number of dimensions (parameters) of the problem increases and complicates the identification of k neighbors which are close enough to the data point to be classified/predicted

From: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

The curse of dimensionality

$$
l=\left(\tfrac{k}{n}\right)^{1/d}
$$

- **I**: side of the hypercube that include the k neighbours
- n: sample size
- d: n. of dimensions
- with n constant (data size), **the hypercube in which the** *k* **neighbors lie gets bigger as** *d* **increases**

From: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

The curse of dimensionality

distributions of all pairwise distances in the neighbourhood between randomly drawn points within d-dimensional unit hypercubes: as the number of dimensions *d* grows, all distances concentrate within a very small range ("*the night where all cows are black*")

From: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

KNN: as lazy as it gets

- KNN is a **lazy algorithm**: each time new datapoints are added (e.g. to be predicted) pairwise distances with all existing datapoints (over all dimensions) must be calculated calculations are slow
- However:
	- when new data are available, there's no need to retrain the model (no parameters to \mathbb{R}^* when new data are available, there's no need to retrain the model (no parameters to \mathbb{R}^* estimate or fine-tune) \rightarrow exc
		- estimate or fine-tune) \rightarrow excellent for applications where data are added incrementally (e.g. on-line learning, update predictions)

What about imputation?

- Ok, we learnt about KNN, but imputation?
- The **imputation of missing SNP genotypes** is a type of prediction (slightly "*sui generis*"), where non-missing values can be considered as training observations and missing values as the test observations
- KNNI is a more advanced imputation method compared to mean/median imputation
- Yet, more specialised method for genomic data have been developed

Why KNN imputation?

Mol Breeding (2016)36:69 DOI 10.1007/s11032-016-0490-y

Marker imputation efficiency for genotyping-by-sequencing data in rice $(Oryza sativa)$ and alfalfa $(Medicago sativa)$

Nelson Nazzicari · Filippo Biscarini · Paolo Cozzi · E. Charles Brummer · Paolo Annicchiarico

Courses

Why KNN imputation?

- GBS data: > 50% missing data
- rice, *Oryza sativa*: ordered markers (known reference genome)
- alfalfa, *Medicago sativa* (lodi & reforma datasets): unordered markers (no reference genome available - at the time)

KNN imputation - rice

- x-axis: % injected missing [1%-20%]
- panels: % allowed missing [10%-70%]
- total accuracy, AA, BB
- MNI (salmon), KNNI (red), SVDI (blue), RFI
- (green), Beagle with ordered markers (solid black), Beagle with unordered markers (dashed black), FILLIN with ordered markers (purple) FILLIN with unordered markers (dashed purple)

KNN imputation - alfalfa

- x-axis: % injected missing [1%-20%]
- panels: % allowed missing [10%-70%]
- total accuracy, AA, AB, BB
- MNI (salmon), KNNI (red), SVDI (blue), RFI
- (green), Beagle with ordered markers (solid black), Beagle with unordered markers (dashed black), FILLIN with ordered markers (purple) FILLIN with unordered markers (dashed purple)

Not only genotypes

J. Dairy Sci. 105:5124-5140 https://doi.org/10.3168/jds.2021-20158

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle

Enyew Negussie,^{1*} © Oscar González-Recio,² © Mara Battagin,³ © Ali-Reza Bayat,⁴ © Tommy Boland,⁵ © Yvette de Haas, ⁶ ■ Aser Garcia-Rodriguez, ⁷ ■ Philip C. Garnsworthy, ⁸ ■ Nicolas Gengler, ⁹ ■ Michael Kreuzer,¹⁰ ® Björn Kuhla,¹¹ ® Jan Lassen,¹² ® Nico Peiren,¹³ ® Marcin Pszczola,¹⁴ ® Angela Schwarm,¹⁵ © Hélène Soyeurt,⁹ © Amélie Vanlierde,¹⁶ © Tianhai Yan,¹⁷ © and Filippo Biscarini¹⁸ ©

NEXT LECTURE

Genotype imputation with KNN: a demonstration (R code)